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ABSTRACT  

One of the more important potential flow results 

obtained using conformal mapping are the solutions 

of the potential flows past a family of airfoil shapes 

known as Joukowsky foils. Solving problem of 

fluid flow around an airfoil is a highly complex 

task. However, reducing the problem to the two-

dimensional ideal fluid flow allows one to employ 

techniques of complex variables, in particular 

utilizing the geometric properties of conformal 

mappings. In this study, we analysed the two 

dimensional ideal fluid flow around a circular 

cylinder obtained by the superposition of simple 

elementary flows, then relate the solution (complex 

potential) to uncambered airfoil by means of 

Joukowsky transformation, and it was found that 

the circulation and the lift force around a circular 

cylinder in the z plane remained unchanged around 

transformed uncambered airfoil in the w plan. 

MATLAB software was used to visualize the 

streamlines around the circular cylinder and the 

corresponding Joukowsky airfoil. The lift force was 

calculated at different angles of attack and it was 

found that the lift force is strongly dependent to the 

angle of attack in a linear proportion.   

Keywords and Phrases: Conformal Map, 

Joukowsky Transformation, Airfoil, Inviscid, 

Incompressible. 

 

I. INTRODUCTION 
Many problems in Mathematics are 

difficult to solve in their original geometric form. If 

the physical problem can be represented by a 

complex functions but geometric structure becomes 

inconvenient then by an appropriate mapping , it 

can be transformed to a problem with much more 

convenient geometry (Sa Pai, 2020). 

In fluid dynamics, a field of significant 

importance is the study of airfoils. Solving  

problem of  fluid flow around an airfoil is a highly 

complex task.  However, reducing the problem to 

the two-dimensional fluid flow allows one to 

employ techniques of complex variables, in 

particular utilizing the geometric properties of 

conformal mappings given by 

                                        w = f(z)                                                                             
(1) 

Where z = x + iy and  w = u + iv. Using this 

technique, in particular Joukowsky transformation, 

the fluid flow around the geometry of an airfoil can 

be model as the flow around a cylinder whose 

symmetry simplifies the needed computations  ( 

Kapania et al, 2008). 

In this pepper, we are to show geometrically via 

Joukowsky transformation the corresponding 

geometry in fluid dynamics, specifically, to exploit 

Joukowsky transformation to analyse the geometric 

nature of  Ideal fluid flow. 

Joukowsky transformation is a conformal mapping,  

that plays an important role in the study of flows 

around airfoils, given by                                  

w = f z = z +
λ2

z
                                                (2) 

 where w is the function in the 

transformed plane and λ is the parameter of the 

transformation that determines the resulting shape 

of the transformed function ( Maloneka  &  De 

Almeida, 2010).  

The flow around airfoil can be solved by 

solving the flow around circular cylinder, then 

relate the solution to the airfoil by means of 

Joukowsky transformation, equation (2) 

Joukowsky transformation; is used because it has 

the property of transforming circles in the z plane 

into shapes that resemble airfoils in the w plane 

(Benson & Thomas, 1996).  

A lifting flow around a circular cylinder is 

generated by the superposition of three elementary 

flows, namely a uniform flow, source-sink flow and  

vortex flow ( Nyadwi, 2018). This requires that the 

velocity potential and stream function be expressed 

as a complex function,  just as the airfoil shape 
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must also be defined using complex variables, 

given by  

 w z = φ + iψ                                                    (3) 

(Bear & Jacob, 1972)                                                                                                                 

If, moreover,  ψ( x , y )  denotes a harmonic 

conjugate of  φ( x, y ), the velocity vector is 

tangent to a curve ψ  x , y  = c.  

The curve  

ψ  x , y  = c                                                   (4)  

is called the streamline of the flow, and the function 

ψ is the stream function. In particular, a boundary 

across which fluid cannot flow is a streamline 

(Brown & Churchill, 2009). 

 

Theorem 1: Consider the lifting flow past a 

cylinder, then its complex potential defined in 

equation (3) can be written as follows:  

w z = V∞  z +
R2

z
 + i

Γ

2π
ln(z)                           (5)  

Therefore (5) decompose into,   

w z = V∞  r +
R2

r
 cos θ −

Γ

2π
θ

+ i  V∞  r − 
R2

r
 sin θ

+
Γ

2π
ln(r)  

Hence,  

w z = φ( r θ) + iψ( r θ)                                                                

and the stream function ψ of the combined flow is 

given by the equation 

ψ = V∞r sin θ  1 −
R2

r2  + 
Γ

2π
ln r                        (6)  

Once the flow around a rotating cylinder has been 

solved, the lift force can be computed by means of 

the Kutta-Joukowsky theorem. (Prachi , 2020) 

 

Theorem 2: Kutta-Joukowsky theorem, states that 

the lift per unit span L´ is directly proportional to 

the circulation Γ. For the proof see Panton 2013.  

Circulation Γ, is a conceptual tool that relates the 

lift on an object to the nature of the fluid flow 

around it. Specifically, circulation is related to 

vorticity on any open surface bounded by the airfoil 

curve, using Stoke’s theorem  

  Γ =  V ⋅ d s =    ∇ ×  V  ∙ d S =  w  ⋅

d S                                            (7)  

For the lifting flow around a cylinder, the 

only source of vorticity comes from the vortex 

flow, which has an infinite vorticity at the origin 

but zero vorticity at every other point. This point 

source of vorticity leads to the finite circulation Γ . 

However,  Γ is also the strength of a vortex flow. 

Therefore, for a flow, there are an infinite number 

of arbitrary Γ values, each corresponding to a 

deferent flow solution satisfying Laplace equation. 

 

Corollary : When the complex potential shown in 

equation (5) is transformed  by a conformal 

mapping function, the circulation Γ and the lift L′ 

for the circular cylinder in the z- plane are the same 

as the circulation Γ and the lift L′  in the w-plane, 

and this is, as a result of the angle and orientation 

preservation property of  the conformal mapping . 

In this study, we considered flow around 

an airfoil as an ideal fluid flow such that the flow is 

inviscid, meaning that have no viscosity, and 

incompressible, meaning that their density remains 

constant, and also satisfy the Kutta condition, 

which states that the fluid flowing over the upper 

and lower surfaces of the airfoil meets at the 

trailing edge of the airfoil, (Anderson, 2010) .  Also 

the airfoil must be moving through the fluid at 

subsonic speeds. This is important because at 

speeds approaching the speed of sound, where 

compressibility effects in the fluid flow can be 

considered negligible, (Katz and Allen, 1991). 

 

II. METHODOLOGY 
The initial step to analyse lifting flow 

around airfoil, is to solve the flow around circular 

cylinder then relate the solution to airfoil by means 

of Joukowsky transformation equation (2) 

 

Fluid Flow Around a Circular Cylinder 

The lifting flow over a cylinder is a combination of 

a uniform flow, source-sink flow, doublet flow and 

vortex flow as follows: 

 

Uniform Flow 

Consider an ideal flow with a free stream uniform 

velocity V∞ in the uniform positive x direction as 

shown in fig (1a). This flow can be defined by 

ϕ = V∞r cos θ                                              (8) 

As potential function and 

𝜓 =  𝑉∞𝑟 𝑠𝑖𝑛 𝜃                                         (9) 

As stream function  

Obviously, (8) and (9) satisfies Laplace’s equation, 

therefore the equipotential curves and streamlines 

are orthogonal. 

 

Source-Sink Flow 

If a flow is diverting from central point 0, 

the flow is referred as source flow, while if a flow 

is converging to the central point 0, the flow 

referred to as sink flow. In the source and sink 

flows all the streamlines are straight lines 

converging or diverging from central point 0, as 

shown in fig(1b).The resulting velocity field for 

these flows only has a radial component 𝑉𝑟 , while is 
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inversely proportional to the distance from 0. With 

these boundary condition in place, the potential and 

stream function for source and sink are given as 

 𝜙 =  
𝛬

2𝜋
𝑙𝑛 𝑟                                             (10) 

and 

𝜓 =  
𝛬

2𝜋
 𝜃                                              (11) 

respectively, where 𝛬 is the rate of volume 

from source (source streangth) and 𝑟 is the distance 

from 0. Note that, positive  𝛬 value refers to source 

and negative 𝛬 refers to sink. 

Consider a uniform stream with the free stream 

velocity V∞ oriented from left to right. 

Superimpose it to a source flow of strength Λ 

located at the origin in polar coordinates as shown 

in fig (1b). The stream function for the resulting 

flow is simply found by addition of the stream 

functions of the two flows. It means  

 𝜓 =  𝑉∞𝑟 𝑠𝑖𝑛 𝜃 +
𝛬

2𝜋
 𝜃                     (12) 

 

 
Figure (1a)              Figure (1b)                      Figure (1c) 

Figure (1): A combination (superposition) of a uniform flow and a source flow generates a flow over a semi-

infinite body.                                                                                           Source : Anderson  (2010). 

 

Doublet Flow 

A doublet flow is a particular degenerate case of 

source –sink combination that leads to a 

singularity,(  Nyadwi , 2018). The potential 

function for doublet flow is  

 𝜙 =  
𝑘

2𝜋
 
𝑐𝑜𝑠 𝜃

𝑟
                                                  (13) 

and stream function 

  𝜓 =  −
𝑘

2𝜋
 
𝑠𝑖𝑛 𝜃

𝑟
                             (14) 

where 𝑘 is the doublet strength. The superposition 

of the uniform and doublet flows provides a model 

of the non lifting flow around a cylinder. Adding 

potential functions given by (8) and (13)  

𝜙 = 𝑉∞𝑟 𝑐𝑜𝑠 𝜃 + 
𝑘

2𝜋
 
𝑐𝑜𝑠 𝜃

𝑟
                               (15) 

Equation (15) is justified by the linear nature of 

Laplace’s equation. Note that setting 𝜓 = 0 yields 

a circle of radius 𝑅 given by 

𝑅 =  
𝑘

2𝜋 𝑉∞
                                                       (16) 

The resulting flow external to 𝑅 is a valid model of 

the ideal flow around a cylinder. However, the 

entire flow field is symmetrical about the 

horizontal axis, meaning that this flow generates no 

lift on the cylinder. As shown in Fig 2  

 
Figure (2a)              Figure (2b)                      Figure (2c) 

Figure 2: a combination (superposition) of a uniform flow and a doublet flow generates a non lifting flow over a 

circular cylinder.                                                                           

Source: Chattot & Hafez, (2015). 
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The superposition of the uniform flow and 

the doublet flow yields a non lifting flow over a 

circular cylinder. To model a lifting flow a vortex 

flow must be superimposed. 

 

Vortex flow  

A flow where all streamlines are concentric circles 

about a given point 0 is refers to as vortex flow. 

The tangential velocity 𝑉𝜃  is inversely proportional 

to the distance from 0. The resulting velocity 

potential of the vortex flow is given by  

𝜙 =  − 
𝛤𝜃

2𝜋
                                                  (17) 

Where 𝛤 is the circulation, that is the strength of 

the vortex. 

The superposition of the uniform, doublet and 

vortex flows yields a potential function  

  𝜙 = 𝑉∞𝑟 𝑐𝑜𝑠 𝜃 − 
𝛤𝜃

2𝜋
+  

𝑘

2𝜋
 
𝑐𝑜𝑠 𝜃

𝑟
      (18) 

and stream function 

 𝜓 = 𝑉∞𝑟 𝑠𝑖𝑛 𝜃 +
𝛤

2𝜋
𝑙𝑛 𝑟  −

𝑘

2𝜋
 
𝑠𝑖𝑛 𝜃

𝑟
                    (19) 

The lifting flow over a cylinder is a combination of 

a non-lifting flow discussed above and a vortex 

flow of strength Γ as shown in the figure (3).  

 

 
Figure (3a)              Figure (3b)                      Figure (3c) 

Figure 3: The synthesis flow of a lifting flow over a cylinder.                                           

Source: Chattot & Hafez (2015). 

 

The streamlines of this final superposition 

of three flows is shown in fig (4). As a result of 

vortex flow, the cylinder is now rotating with a 

finite angular velocity. This rotation eliminates the 

symmetry along the horizontal axis , creating an 

uneven pressure distribution, which generates lift. 

Equation (20) and (21) therefore are solutions to 

the lifting flow around a circular cylinder. 

 
Figure 4: (Left) Doublet flow with strength 𝑘 .Computed Doublet flow (right) in MATLAB with strength κ = 

0.05 and streamlines (blue) and equipotential curves (red).                 

  Source : Panton ( 2013). 

 

Lift Around a Circular Cylinder   

Consider an incompressible flow over an 

airfoil and let 𝐴 be any curve in the fluid flow 

enclosing the airfoil, then the circulation is given 

by  

 

𝛤 ≡  𝑉
𝐴

 ⋅ 𝑑𝑠                                (20)  

where 𝑉 is the velocity field around the 

airfoil and the airfoil is generating a lift. It will turn 

out that the drag force is always zero;  𝐹𝑑 = 0, and 

that the lift force is directly proportional to the 
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circulation constant 𝛤. The exact relation for the lift 

force is   

𝐿′ =  𝜌𝑉∞𝛤                                            (21) 

 Where 𝜌 is the fluid density and 𝑉∞ is the fluid 

velocity far upstream of the airfoil and 𝛤 is the 

circulation defined in equation (20) 

 

Joukowsky Mapping from Circular Cylinder to 

Airfoil 

 Having solved for the flow around a 

cylinder with the superposition of three elementary 

flows, we need to relate this solution to an airfoil 

shape. To accomplish this, we use a conformal 

mapping function called the Joukowsky 

transformation given by equation (2)   

  Consider, 

                                     𝑧 = 𝑥 + 𝑖𝑦 = 𝑟(𝑐𝑜𝑠 𝜃 +
𝑖𝑠𝑖𝑛𝜃 )=𝑟𝑒𝑖𝜃                                          (22) 

𝑟𝑒𝑖𝜃   is a circle of radius r and the center at the 

origin in the 𝑧- plane (Lysak,  2011). 

Therefore, the Joukowsky transformation, equation 

(2) in polar form gives 

                                     𝑤 = 𝑟𝑒𝑖𝜃 +
𝜆2

𝑟
 𝑒−𝑖𝜃                                                                           

(23) 

⟺ 

𝑤 = (𝑟 𝑐𝑜𝑠 𝜃 + 𝑖𝑟𝑠𝑖𝑛 𝜃 ) +
𝜆2

𝑟
  ( 𝑐𝑜𝑠 𝜃 − 𝑖𝑠𝑖𝑛 𝜃 ) 

= 𝑟 𝑐𝑜𝑠 𝜃 + 
𝜆2

𝑟
 𝑐𝑜𝑠 𝜃 + 𝑟 𝑖𝑠𝑖𝑛 𝜃 − 𝑖

𝜆2

𝑟
(𝑠𝑖𝑛 𝜃 ) 

⟺ 

   𝑤 =  𝑟 + 
𝜆2

𝑟
  𝑐𝑜𝑠 𝜃 + 𝑖  𝑟 − 

𝜆2

𝑟
 𝑠𝑖𝑛 𝜃                                                 

(24) 

Let  

  𝑎 =  𝑟 +
𝜆2

𝑟
   and  𝑏 =  𝑟 −

𝜆2

𝑟
 

Therefore,   

𝑤 = 𝑎 𝑐𝑜𝑠 𝜃 + 𝑖𝑏 𝑠𝑖𝑛 𝜃                                 (25) 

From  

𝑤 = 𝑢 + 𝑖𝑣 
Implies that. 

𝑢 = 𝑎 𝑐𝑜𝑠 𝜃  ⇒ 𝑐𝑜𝑠 𝜃 =
𝑢

𝑎
 

and 

𝑣 = 𝑏 𝑠𝑖𝑛 𝜃  ⇒ 𝑠𝑖𝑛 𝜃 =
𝑣

𝑏
 

From   𝑐𝑜𝑠2𝜃 +  𝑠𝑖𝑛2𝜃 = 1 

Implies that, 

  
𝑢

𝑎
 

2

+   
𝑣

𝑎
 

2

= 1                    (26) 

⟺ 

                                                              
1

𝑎2 𝑢2 +
1

𝑏2 𝑣2 = 1                    (27) 

If we set the parameter   𝜆 = 𝑟, then 𝑎 =  𝑟 +
𝑟2

𝑟
 

and 𝑏 =  𝑟 −
𝑟2

𝑟
, and this implies that 

𝑎 =  2𝑟 and  𝑏 = 0,  

 

and from this it can be seen that the circle 

in the 𝑧-plane is transformed into a flat plate of 

length 4𝑟 in the 𝑤−plane. It means that the points 

of the circle in 𝑧-plane occupy the strip  −2𝑟 ≤
𝑢 ≤ 2𝑟, in the 𝑤-plane, shown in fig (5). 

 

 
Figure 5:  A unit circle in the z plane with center at the origin and corresponding flat plate in the w plane 

transformed using Joukowsky transformation, for 𝜆 = 1. 
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For 𝜆 > 𝑟,  

                                             
𝑢

𝑟+ 
𝜆2

𝑟

 

2

+  
𝑢

𝑟− 
𝜆2

𝑟

 

2

= 1                                                            (28) 

                                                                   ⟺ 

                                              
𝑢2

𝑟2 1+ 𝜆2 𝑟2  2 +
𝑣2

𝑟2 1− 𝜆2 𝑟2  2  = 1                                             (29) 

 

Equation (29) is an equation of ellipse center at origin with major axis 𝑎 =  𝑟 1 +  𝜆2 𝑟2   and minor axis  

𝑏 = 𝑟 1 − 𝜆2 𝑟2  .Therefore the circle in 𝑧- plane is transformed into an ellipse in the 𝑤-plane. Shown in fig 

(6). 

 
Figure 6: A unit circle in the z plane with center at the origin and corresponding ellipse in the w plane 

transformed using Joukowsky transformation, for 𝜆 > 1 

   

However, neither of the shapes in fig.5 

and 6 resemble an airfoil. The airfoil shape is 

realized by creating a circle in the 𝑧 plane with a 

center that is offset from the origin, as shown in fig. 

7 and 8. If the circle in the 𝑧 plane is offset slightly, 

the desired transformation parameter is given as  

𝜆 = 𝑟 −  𝑡                                                 (30) 

Where 𝑟 is radius of a circle and  𝑡 is the 

coordinates of the center of the circle (Panton, 

2013).  

 
Figure 7:  Cylinder in 𝑧 plane with center offset on the 𝑥 axis and the corresponding uncambered Joukowsky 

airfoil in the 𝑤 plane with 𝜆 = 𝑟 −  𝑡  
 

The transformation in the w plane 

resembles the shape of an uncambered airfoil 

symmetric about the 𝑥 axis, as shown in Fig. (7). 

The 𝑥 coordinate of the circle origin therefore 

determines the thickness distribution of the 

transformed airfoil.If the center of the circle in the 

𝑧 plane is also offset on the y axis, the Joukowsky 

transformation yields an  cambered airfoil as shown 

in Fig. (8). This shows that the 𝑦 coordinate of the 
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circle center determines the curvature of the transformed airfoil. 

 

 
Figure 8: Cylinder in 𝑧 plane with center offset on both 𝑥 and 𝑦 axis and the corresponding cambered 

Joukowsky airfoil in the 𝑤 plane with 𝜆 = 𝑟 −  𝑡  
 

The airfoil shapes created from the 

Joukowsky transformation are known as 

Joukowsky airfoils. The 𝑥 intercepts of the circle in 

the 𝑧 plane become the leading and trailing edges 

of the mapped airfoil in the w plane, (Chattot & 

Hafez, 2015). 

Note that, the generalised method for 

computation of the lift force on arbitrary airfoils 

cannot be executed manually; consequently, the 

method is coded in MATLAB for both symmetric 

and cambered airfoils (Swem, 2017).   

 

 

 

 

 

III. RESULT 
Having the solution for lifting flow around 

a cylinder and the technique for mapping this 

solution to the solution around a joukowsky airfoil, 

computational graphing program can be used to 

visualize the flow and establish lift calculation for 

several airfoils. 

The contour plot of the imaginary 

component of the complex potential of the equation 

(5) gives the flow around the airfoil. The lift force 

is calculated using the formula in equation (21) 

where  𝛤 for uncambered airfoil is given by; 

𝛤 =
2𝑟𝑉∞ 𝑠𝑖𝑛 𝛼

2𝜋
                                                      (31) 

From the MATLAB codes used, our result is 

presented by the following figures: 

 

Flow Around a Circular Cylinder for  ∝ = 𝟎. Lift Force: 0 N/M   Flow Around a corresponding Airfoil 

for ∝ = 𝟎. Lift Force: 0N/M 

 
Figure 9: The streamlines around circular cylinder plot computed in the z plane and the corresponding 

uncambered Joukowsky airfoil. The plot was generated with  𝑉∞ = 200𝑚/𝑠, 𝛼 = 0 , and 𝜌 = 1.225 𝑘𝑔/𝑚3. 

The cylinder parameters used: 𝑥 =  0.1𝑚,  𝑦 = 0𝑚 and 𝑟 = 1.13𝑚 
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Flow Around a Circular Cylinder for ∝ = 𝟑. Lift Force: 4.612 N/M   Flow Around a corresponding 

Airfoil for ∝ = 𝟑. Lift Force: 4.612 N/M  

 
Figure 10: The streamlines around circular cylinder plot computed in the z plane and the corresponding 

uncambered Joukowsky airfoil. The plot was generated with 𝑉∞ = 200𝑚/𝑠, 𝛼 = 3 , and 𝜌 = 1.225 𝑘𝑔/𝑚3. The 

cylinder parameters used: 𝑥 =  0.1𝑚,  𝑦 = 0𝑚, 𝑟 = 1.13𝑚. 

 

Flow Around a Circular Cylinder for ∝ = 𝟓. Lift Force: 7.6805 N/M    Flow Around a corresponding 

Airfoil for ∝ = 𝟓. Lift Force: 7.6805  N/M 

 
Figure 11: The streamlines around circular cylinder plot computed in the z plane and the corresponding 

uncambered Joukowsky airfoil. The plot was generated with  𝑉∞ = 200𝑚/𝑠, 𝛼 = 5 , and 𝜌 = 1.225 𝑘𝑔/𝑚3. 

The cylinder parameters used: 𝑥 =  0.1𝑚,  𝑦 = 0𝑚, 𝑟 = 1.13𝑚. 

            

Flow Around a Circular Cylinder for Airfoil for  ∝ = 𝟕. Lift Force: 10.7396 N/M   Flow Around a 

corresponding for Airfoil for  ∝ = 𝟕. Lift Force: 10.7396 N/M 
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Figure 12: The streamlines around circular cylinder plot computed in the z plane and the corresponding 

uncambered Joukowsky airfoil. The plot was generated with 𝑉∞ = 200𝑚/𝑠, 𝛼 = 7, and 𝜌 = 1.225 𝑘𝑔/𝑚3. The 

cylinder parameters used: 𝑥 =  0.1𝑚,  𝑦 = 0𝑚, 𝑟 = 1.13𝑚. 

 

Table 1: Summary of results for lift force calculation 

Angle of attack 𝛼  0 3 5 7 

Lift force  0 4.6121 7.6805 10.7396 

 

 
Figure 13: Lift force vs Angle of attack 

 

IV. RESULT DISCUSSION 
When a Joukowsky transformation is 

applied to an offset circular cylinder, one can get 

the Joukowsky airfoils by the use of instance of 

Matlab program. The streamlines generated by the 

imaginary part of the complex potential of the 

equation (5) is the flow solution around cylinder 

and corresponding symmetric airfoil. The lift force 

is calculated using the formula in equation (21) and 

the angle α that we have in the equation (31) was 

measured in radians and when converted into 

degrees amounts to 
απ

180
. In figure (9), at zero angle 

of attack, there is no lift generated on the cylinder 

and on the airfoil because the fluid flow is 

symmetric. This is due to the fact that there is a 

symmetric distribution of  the streamlines about the 

x axis on both the circular cylinder in the z plane 

and the airfoil in the w plane. Again, looking at the 

airfoil, it is clear that the streamlines meet at the 

trailing edge, and therefore the Kutta condition is 

satisfied. As shown on table 1 above, we computed 

the streamlines around the circular cylinder and the 

corresponding airfoil at different values of angle of 

attack. In figure (10), the calculated lift force is 

4.6121 N/m at α = 3, in figure (11), the lift force 

found is 7.6805 N/m at α = 5, and finally we have 

got 10.7396 N/m at α = 7, in figure (12). 

The lift force was calculated at different angles of 

attack and it was found that the lift force is strongly 

dependent to the angle of attack in a linear 

proportion as shown in figure 13, 
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